Νέα:
Κυριακή 18 Αυγούστου 2019

Shoutbox!

Τελευταίο 15 Φωνές:

 

nabz0r

07 Αυγούστου 2019, 20:03
Εγώ είμαι αρκετά παλιός;
 

Sport_Billy

03 Αυγούστου 2019, 11:34
Yo!
 

synzeus

29 Ιουλίου 2019, 09:38
Όλοι ζούμε τελικά. Και γιατί να μην αναβαθμίσουμε την πτυχιάρα μας;
 

TabloMaxos

29 Ιουλίου 2019, 01:46
Τζα
 

spithash

28 Ιουλίου 2019, 19:45
Αγαπητοί πληροφορικάριοι και κυρίως Μηχανικοί Λογισμικού. Σας συστήνω να μην μπείτε στη διαδικασία πτυχίου πανεπιστημίου
 

synzeus

20 Ιουλίου 2019, 16:08
Ετοιμαζόμαστε να αναβαθμίσουμε το πτυχί μας! Χαχαχα
 

Sérmac

18 Ιουλίου 2019, 00:54
Ṗáşşẅôṝđ, riffmaster, synzeus?
Γύρισε το forum σε backup του 2009 και βλέπω τέτοια usernames;
 

synzeus

14 Ιουλίου 2019, 11:34
Καλημέρα τα παιδιά!
 

riffmaster

01 Ιουλίου 2019, 19:50
μια χαρά, τρώμε κρεμόπιτες και περνάμε τέλεια.
 

Ṗáşşẅôṝđ

01 Ιουλίου 2019, 17:57
τι λέει; πως πάει το ζεστό χρήμα στας Σέρρας; χαχαχαχαχαχχαχαχ
 

Ṗáşşẅôṝđ

01 Ιουλίου 2019, 17:22
AAAAAAAAAAAAAAAAAAAAAAAAXAXAXAXAXAXAXAXAXAXAXAXAXAXAXAXAX!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 

blAck PR

01 Ιουλίου 2019, 16:13
πες
 

vRiskys

26 Ιουνίου 2019, 13:00
Yparxeis kapoios admin na kaneis kapoies allages please ? :D
 

vRiskys

26 Ιουνίου 2019, 10:25
Kserei kaneis pws kanw diagrafh ena comment;
 

ALS

12 Μαΐου 2019, 21:56
Καλησπέραααα!!! :D

Εμφάνιση 50 τελευταίων
Καλώς ορίσατε, Επισκέπτης. Παρακαλούμε συνδεθείτε ή εγγραφείτε. Χάσατε το email ενεργοποίησης;
18 Αυγούστου 2019, 03:41

Σύνδεση με όνομα, κωδικό και διάρκεια σύνδεσης

Μέλη
  • Σύνολο μελών: 5224
  • Τελευταία: stelioskpz

Στατιστικά
  • Σύνολο μηνυμάτων: 86977
  • Σύνολο θεμάτων: 11590
  • Σε σύνδεση σήμερα: 94
  • Σε σύνδεση έως τώρα: 635
  • (14 Νοεμβρίου 2013, 23:43)

Συνδεδεμένοι
Μέλη: 0
Επισκέπτες: 70
Σύνολο: 70

Για να γραφτείτε σε κάποια ομάδα μελών, πατήστε εδώ.

Υπηρεσίες ΕΔΕΤ

Εύδοξος
Okeanos
Άτλας
Ακαδημαϊκή Ταυτότητα

Μέσα Μεταφοράς

Αστικό ΚΤΕΛ Σερρών
ΚΤΕΛ Ν. Σερρών
Δρομολόγια ΤΡΑΙΝΟΣΕ

Πρόσφατα

Καιρός

Σελίδες: [1]   Κάτω
Εκτύπωση
Οδηγός LaTeX
0 μέλη και 1 επισκέπτης διαβάζουν αυτό το θέμα. Αναγνώστηκε 11398 φορές.
Sérmac
Διαχειριστής SMF
*****
Μηνύματα: 3990
Θετικοί ψήφοι: +902

Αποσυνδεδεμένος Αποσυνδεδεμένος

14 Σεπτεμβρίου 2011, 02:52
0

ΟΔΗΓΟΣ LATEX

Για να χρησιμοποιήσουμε την [tex]\LaTeX[/tex] και να γράψουμε μαθηματικά σύμβολα και παραστάσεις, περικλείουμε το κείμενο μας μέσα στα tags [tex] και [/tex]. Τα tags αυτά δεν χρειάζεται να τα πληκτρολογούμε κάθε φορά γιατί μπορούν να εισαχθούν αυτόματα πατώντας το κουμπί tex που υπάρχει πάνω από τον χώρο που γράφουμε κατά την δημιουργία μίας νέας δημοσίευσης.



Μενού γρήγορης μετάβασης:
Δυνάμεις και Δείκτες
Κλάσματα, Ρίζες και Παρενθέσεις
Βασικά Σύμβολα - Ελληνική Αλφάβητος
Άθροισμα, Ολοκλήρωμα, Παράγωγος και Όριο
Πίνακες και Δίκλαδες Συναρτήσεις




Δυνάμεις και Δείκτες

Έστω ότι θέλουμε να γράψουμε μία αλγεβρική παράσταση με δυνάμεις, για παράδειγμα x στο τετράγωνο συν 5x μείον 1. Τότε πληκτρολογούμε:

Κώδικας: [Επιλογή]
[tex]x^2-1[/tex]
Το οποίο δίνει: [tex]x^2-1[/tex]

Το σύμβολο δηλαδή ^ δίνει δηλαδή την ύψωση σε δύναμη. Τώρα αν θέλουμε να υψώσουμε σε κάτι πιο περίπλοκο, π.χ. στην ν+1, τότε το ν+1 πρέπει να το βάλουμε σε αγκύλες, δηλαδή να γράψουμε:

Κώδικας: [Επιλογή]
[tex]x^{n+1}+5x-1[/tex]
που μας δίνει το επιθυμητό [tex]x^{n+1}+5x-1[/tex]

Αν θέλουμε να βάλουμε δείκτη σε μία μεταβλητή, τότε χρησιμοποιούμε την κάτω παύλα _. Για παράδειγμα:

Κώδικας: [Επιλογή]
[tex]x_1+x_2=1[/tex]
Το οποίο δίνει: [tex]x_1+x_2=1[/tex]

Φυσικά τα παραπάνω μπορούν να συνδυαστούν και να έχουμε πιο περίπλοκες εκφράσεις. Επίσης χρησιμοποιώντας τα ίδια σύμβολα, μπορούμε να έχουμε δύναμη στη δύναμη στη δύναμη... ή δείκτη στον δείκτη στον δείκτη... πάντα με τη βοήθεια όμως τον αγκίστρων { και }. Μερικά παραδείγματα:

Κώδικας: [Επιλογή]
[tex]x_1^2+x_2^2=x_3^2[/tex]
[tex]x_1^2+x_2^2=x_3^2[/tex]

Κώδικας: [Επιλογή]
[tex]25y_{12}^{2n}-4y_{11}^{2m}=x_{10}^{3n+m}[/tex]
[tex]25y_{12}^{2n}-4y_{11}^{2m}=x_{10}^{3n+m}[/tex]

Κώδικας: [Επιλογή]
[tex]x_{k_{n_1}}=y^{k^{m^2}}[/tex]
[tex]x_{k_{n_1}}=y^{k^{m^2}}[/tex]




Κλάσματα, Ρίζες και Παρενθέσεις

Για να γράψουμε ένα κλάσμα, γράφουμε [tex]\frac{}{}[/tex] (το frac έχει προέλθει από το αγγλικό fraction που σημαίνει κλάσμα) όπου μέσα στην πρώτη αγκύλη γράφουμε τον αριθμητή, ενώ μέσα στην δεύτερη τον παρανομαστή. Μερικά παραδείγματα:

Κώδικας: [Επιλογή]
[tex]\frac{2}{4}=\frac{1}{2}[/tex]
[tex]\frac{2}{4}=\frac{1}{2}[/tex]

Κώδικας: [Επιλογή]
[tex]\frac{a^n}{a^m}=a^{n-m}[/tex]
[tex]\frac{a^n}{a^m}=a^{n-m}[/tex]

Κώδικας: [Επιλογή]
[tex]\frac{a^n}{b^n}=(\frac{a}{b})^n[/tex]
[tex]\frac{a^n}{b^n}=(\frac{a}{b})^n[/tex]

Στο τελευταίο παράδειγμα, αν θέλουμε οι παρενθέσεις να είναι λίγο μεγαλύτερες για να "αγκαλιάζουν" καλύτερα το κλάσμα, θα πρέπει εκεί που ανοίγουμε παρένθεση να γράψουμε " \left( ", ενώ εκεί που την κλείνουμε " \right) ". Δηλαδή:

Κώδικας: [Επιλογή]
[tex]\frac{a^n}{b^n}=\left(\frac{a}{b}\right)^n[/tex]
[tex]\frac{a^n}{b^n}=\left(\frac{a}{b}\right)^n[/tex]

Με τον ίδιο τρόπο μπορούμε να κάνουμε να εμφανίζονται πιο μεγάλες και οι αγκύλες ή τα άγκιστρα (π.χ. \left{ και \right} ).


Για να γράψουμε μία ρίζα, γράφουμε [tex]\sqrt{}[/tex] και μέσα στην αγκύλη γράφουμε αυτό που θέλουμε να βρίσκεται κάτω από την ρίζα (το sqrt έχει προέλθει από το αγγλικό square). Μερικά παραδείγματα:

Κώδικας: [Επιλογή]
[tex]\sqrt{4}=2[/tex]
[tex]\sqrt{4}=2[/tex]

Κώδικας: [Επιλογή]
[tex]\sqrt{a^2}=|a|[/tex]
[tex]\sqrt{a^2}=|a|[/tex]

Αν δεν θέλουμε να γράψουμε την τετραγωνική ρίζα, αλλά θέλουμε για παράδειγμα την τρίτη ρίζα (ή γενικά την ν-οστή ρίζα), τότε γράφουμε [tex]\sqrt[n]{}[/tex], προσθέτουμε δηλαδή το [n] δίπλα στην λέξη sqrt.

Κώδικας: [Επιλογή]
[tex]\sqrt[3]{8}=2[/tex]
[tex]\sqrt[3]{8}=2[/tex]

Κώδικας: [Επιλογή]
[tex]\sqrt[n]{a}=a^{\frac{1}{n}}[/tex]
[tex]\sqrt[n]{a}=a^{\frac{1}{n}}[/tex]




Βασικά Σύμβολα - Ελληνική Αλφάβητος

[tex] \rightarrow [/tex] ή [tex] \to [/tex]: [tex]\rightarrow[/tex]
[tex] \leftarrow [/tex]: [tex]\leftarrow[/tex]
[tex] \Rightarrow [/tex]: [tex]\Rightarrow[/tex]
[tex] \Leftarrow [/tex]: [tex]\Leftarrow[/tex]
[tex] \LeftRightarrow [/tex]: [tex]\Leftrightarrow[/tex]
[tex] \longrightarrow [/tex]: [tex]\longrightarrow[/tex]
[tex] \Longrightarrow [/tex]: [tex]\Longrightarrow[/tex]
[tex] \cdot [/tex]: [tex]\cdot[/tex]
[tex] \geq [/tex]: [tex]\geq[/tex]
[tex] \leq [/tex]: [tex]\leq[/tex]
[tex] \nq [/tex]: [tex]\neq[/tex]
[tex] \pm [/tex]: [tex]\pm[/tex]
[tex] \simeq [/tex]: [tex]\simeq[/tex]
[tex] \infty [/tex]: [tex]\infty[/tex]
[tex] \in [/tex]: [tex]\in[/tex]
[tex] \exists [/tex]: [tex]\exists[/tex]
[tex] \forall [/tex]: [tex]\forall[/tex]
[tex] \subseteq [/tex]: [tex]\subseteq[/tex]
[tex] [tex]\subset [/tex]: [tex]\subset[/tex]
[tex] \cap [/tex]: [tex]\cap[/tex]
[tex] \cup [/tex]: [tex]\cup[/tex]

Ελληνικά γράμματα μέσα στα tags [tex] [/tex] δεν επιτρέπονται. Για να εισάγουμε έτσι κάποιο γράμμα της ελληνικής αλφαβήτου, π.χ. το "δ", δεν αρκεί απλά να γράψουμε "δ", αλλά πρέπει να γράψουμε \delta. Παρακάτω έχουμε την αντιστοιχία των ελληνικών γραμμάτων με τον κώδικα που πρέπει να γράψουμε.



Τα σύμβολα στην LaTeX είναι πραγματικά εκατοντάδες. Ένα γρήγορο google search του "LATEX symbols" θα σας βγάλει αρκετά αποτελέσματα για sites που έχουν μαζεμένα πολλά από τα σύμβολα αυτά (π.χ. δείτε εδώ). Εκεί μπορείτε να ανατρέχετε αν δεν θυμάστε κάποιο σύμβολο ή αν θέλετε κάτι πιο εξειδικευμένο.




Άθροισμα, Ολοκλήρωμα, Παράγωγος και Όριο

Για να γράψουμε ένα άθροισμα, γράφουμε [tex]\sum[/tex], ενώ αν θέλουμε να βάλουμε κάτω και άνω όριο στο άθροισμα, αυτό το κάνουμε με τη χρήση του συμβόλου της δύναμης και του δείκτη. Για παράδειγμα:

Κώδικας: [Επιλογή]
[tex]\sum_{i=0}^{\infty}\frac{1}{2^i}=2[/tex]
[tex]\sum_{i=0}^{\infty}\frac{1}{2^i}=2[/tex]

Για να γράψουμε ένα ολοκλήρωμα, γράφουμε [tex]\int[/tex], ενώ αν θέλουμε ορισμένο ολοκλήρωμα, τότε το άνω και κάτω όριο μπαίνει με τη χρήση του συμβόλου της δύναμης και του δείκτη. Για παράδειγμα:

Κώδικας: [Επιλογή]
[tex]\int xdx=\frac{x^2}{2}+c[/tex]
[tex]\int xdx=\frac{x^2}{2}+c[/tex]

Προσοχή! Μετά το \int πρέπει να ακολουθεί κενό. Το σωστό, δηλαδή, είναι \int xdx και όχι \intxdx. Το κενό δεν είναι απαραίτητο αν πρόκειται για ορισμένο ολοκλήρωμα, οπότε και χρησιμοποιούμε τα σύμβολα του δείκτη και του εκθέτη ή αν ακολουθεί άγκιστρο {.

Κώδικας: [Επιλογή]
[tex]\int_0^1xdx=\frac{1}{2}[/tex]
[tex]\int_0^1xdx=\frac{1}{2}[/tex]

Για να γράψουμε την παράγωγο, χρησιμοποιούμε το σύμβολο [tex]\prime [/tex]. Το σύμβολο αυτό το χρησιμοποιούμε σαν εκθέτη, δηλαδή γράφουμε [tex]^\prime [/tex]. Για παράδειγμα:

Κώδικας: [Επιλογή]
[tex]\left( \frac{1}{x}\right)^\prime=-\frac{1}{x^2}[/tex]
[tex]\left( \frac{1}{x}\right)^\prime=-\frac{1}{x^2}[/tex]

Αν θέλουμε να γράψουμε την παράγωγο σε μορφή dy/dx, δεν χρειάζεται να χρησιμοποιήσουμε ειδικό συμβολισμό, αλλά σχηματίζουμε κανονικά ένα κλάσμα με την εντολή \frac.

Κώδικας: [Επιλογή]
[tex]\frac{d}{dx}f(x) =f^\prime(x)[/tex]
[tex]\frac{d}{dx}f(x) =f^\prime(x)[/tex]

Για να γράψουμε ένα όριο, γράφουμε [tex]\lim_{}[/tex], όπου μέσα στις αγκύλες γράφουμε αυτό που θέλουμε να εμφανίζεται κάτω από το όριο. Για παράδειγμα:

Κώδικας: [Επιλογή]
[tex]\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}=f^{\prime}(x_0)[/tex]
[tex]\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}=f^{\prime}(x_0)[/tex]

Ένας εναλλακτικός τρόπος για να βάζουμε το που τείνει το όριο είναι με χρήση του \limits_{} αντί της κάτω παύλας. Για παράδειγμα:

Κώδικας: [Επιλογή]
[tex]\lim\limits_{n\to\infty} \sum\limits_{k=1}^n \frac{1}{k^2}=\frac{\pi^2}{6}[/tex]
[tex]\lim\limits_{n\to\infty} \sum\limits_{k=1}^n \frac{1}{k^2}=\frac{\pi^2}{6}[/tex]




Πίνακες και Δίκλαδες Συναρτήσεις

Η δημιουργία πίνακα είναι κάπως πιο περίπλοκη, γι' αυτό θα προσπαθήσουμε να την καταλάβουμε μέσα από παραδείγματα. Ένας πίνακας 3 επί 3, μπορεί να κατασκευαστεί με τον ακόλουθο τρόπο:

Κώδικας: [Επιλογή]
[tex]
\begin{array}{c c c}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
[/tex]

[tex]
\begin{array}{c c c}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
[/tex]

Ο πίνακας ξεκινάει με την εντολή \begin{array} και τελειώνει με την εντολή \end{array}. Το {c c c} δηλώνει ότι έχουμε 3 στήλες, τα περιεχόμενα των οποίων θέλουμε να έχουν κεντρική στοίχιση (c: central). Έτσι, αντί για το γράμμα c, μπορούμε να βάλουμε το l (από το left) για αριστερή στοίχιση και το r (από το right) για δεξιά στοίχιση. Στη συνέχεια, γράφουμε το περιεχόμενο των γραμμών, χωρίζοντας κάθε γραμμή με το \\, ενώ το περιεχόμενο της κάθε στήλης με το &.

Παρατηρούμε, όμως, ότι κάτι λείπει. Οι παρενθέσεις. Δεν τις βάλαμε παραπάνω γιατί ο παραπάνω τρόπος είναι γενικός και χρησιμεύει τόσο στην κατασκευή πίνακα όσο και στη δημιουργία δίκλαδων, τρίκλαδων κ.ο.κ. συναρτήσεων. Αν θέλουμε, λοιπόν, να βάλουμε παρενθέσεις, ώστε να γίνει η παραπάνω συστοιχία πίνακας, τότε απλά προσθέτουμε στην αρχή του κώδικα το \left( και στο τέλος το \right) (όπως έχουμε πει και πιο πριν, οι λέξεις \left και \right χρειάζονται πριν το σύμβολο της παρένθεσης ώστε η παρένθεση να γίνει μεγάλη και να αγκαλιάσει όλο το περιεχόμενο).

Κώδικας: [Επιλογή]
[tex]
\left( \begin{array}{c c c}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right)
[/tex]

[tex]
\left( \begin{array}{c c c}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array} \right)
[/tex]

Έτσι, αν αντί να βάλουμε παρενθέσεις, βάλουμε στην αρχή ένα άγκιστρο (δηλαδή \left\{ ) (Προσοχή: Για να εμφανιστεί το σύμβολο του άγκιστρου { πρέπει γράψουμε \{ ) και στο τέλος τίποτα, έχουμε:

Κώδικας: [Επιλογή]
[tex]
\left\{ \begin{array}{c c c}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
[/tex]

[tex]
\left\{ \begin{array}{c c c}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}
[/tex]

Οπότε, τώρα μπορούμε να κατασκευάσουμε μία δίκλαδη συνάρτηση, θεωρώντας την σαν έναν πίνακα 2x2 ως εξής:

Κώδικας: [Επιλογή]
[tex]f(x)=
\left\{ \begin{array}{l l}
x^3, & x\le 0 \\
x^2, & x>0 \\
\end{array}
[/tex]

[tex]f(x)=
\left\{ \begin{array}{l l}
x^3, & x\le 0 \\
x^2, & x>0 \\
\end{array}
[/tex]

Παρατήστε τι αλλάξαμε στον κώδικα για να πάρουμε αυτό το αποτέλεσμα.




Ελπίζω η [tex]\LaTeX[/tex] να σας άρεσε και να μην σαν τρόμαξε. Αν αρχίσετε να γράφετε τα μαθηματικά σας σε αυτή, θα δείτε ότι δεν είναι τίποτα. Κάντε της δοκιμές σας στο topic εδώ.


Οι παραπάνω οδηγίες γράφτηκαν από τον χρήστη helios στο enjoyschool.gr.


Τελευταία τροποποίηση: 15 Σεπτεμβρίου 2011, 11:25 από Sermac Καταγράφηκε
TeiSerron.gr
Σελίδες: [1]   Πάνω
Εκτύπωση